RE: Topología con conjunto definido con coordenas polares

¿Qué tal?

Estoy estudiando Cálculo II, con un problema de esos de analizar si un conjunto es abierto, cerrado, etc…  pero resulta que el conjunto lo definen en polares y no consigo imaginármelo.

Lo definen así:

A={ (r,θ) |  r =  1 + e ,  0 ∈ ( 0 , +∞ ) }

¿Cómo se dibuja? Tengo que estudiar si es abierto, cerrado, acotado, compacto, arco-conexo.

Gracias

fernandooros Estudiante Enviada el 7 de febrero de 2018 a Topología en R^n.
Crear comentario
1 Respuestas

Solución

Hola, yo te ayudo.

El conjunto A={ (r,θ) |  r =  1 + e ,  0 ∈ ( 0 , +∞ ) }  es una curva definida en polares.

Si vas dando valores al ángulo puedes ver que cuando el ángulo es 0 tendrías que r=2 así que la curva empezaría en el punto (2,0)  (aunque este punto realmente no pertenece a la curva por que el intervalo de valores del ángulo es abierto.

A partir de ahí, a media que el ángulo gira (se va haciendo grande) hay que tener en cuenta que la exponencial e irá tomando valores más pequeños (porque es decreciente). Por ejemplo, de 0 a π/2 al curva tiene este aspecto

RE: Topología con conjunto definido con coordenas polares

si seguimos girando hasta 2π la r se va haciendo cada vez más pequeña:

RE: Topología con conjunto definido con coordenas polares

Si seguimos dando valores más grandes al ángulo empezaremos a dar vueltas y más vueltas y la e tomando valores cada vez más pequeños. Si θ → ∞ entonces e-θ → 0 y por lo tanto r → 1+0=1.

Éste es el aspecto de la curva tras dar 30 vueltas. Está claro que tiende a una circunferencia de radio 1 centrada en el origen:

RE: Topología con conjunto definido con coordenas polares

Aclarado el tema del dibujo, intenta tú resolver el problema topológico y si tienes dudas escribres otra pregunta.

Saludos



Esta respuesta resuelve la pregunta

¿Te ha ayudado? Puedes agradecer el trabajo de


invitándole a algo ;-)


Ayudante Respuesta escrita el 9 de febrero de 2018.

Pefecto !

A ver si lo hago bien:

int A = ∅

frA = A ∪  x2+y2=1

extA= R2– frA

fernandooros Estudiante el 12 de febrero de 2018.

No es correcto.

El punto (2,0) no pertenece al conjunto pero sí a la frontera y me temo que te estás olvidando de él.

int A = ∅

frA = A ∪  {(x,y)∈R2  |  x2+y2=1 }  ∪ (2,0)

extA = R2– frA

Saludos

MatesMan Ayudante el 12 de febrero de 2018.
Crear comentario

Escribe tu respuesta

Al hacer click en "Responder" certificas que has leído y aceptas nuestra Política de privacidad y Términos de servicio.